Skip to main content
\(\newcommand{\set}[1]{\{1,2,\dotsc,#1\,\}} \newcommand{\ints}{\mathbb{Z}} \newcommand{\posints}{\mathbb{N}} \newcommand{\rats}{\mathbb{Q}} \newcommand{\reals}{\mathbb{R}} \newcommand{\complexes}{\mathbb{C}} \newcommand{\twospace}{\mathbb{R}^2} \newcommand{\threepace}{\mathbb{R}^3} \newcommand{\dspace}{\mathbb{R}^d} \newcommand{\nni}{\mathbb{N}_0} \newcommand{\nonnegints}{\mathbb{N}_0} \newcommand{\dom}{\operatorname{dom}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\prob}{\operatorname{prob}} \newcommand{\Prob}{\operatorname{Prob}} \newcommand{\height}{\operatorname{height}} \newcommand{\width}{\operatorname{width}} \newcommand{\length}{\operatorname{length}} \newcommand{\crit}{\operatorname{crit}} \newcommand{\inc}{\operatorname{inc}} \newcommand{\HP}{\mathbf{H_P}} \newcommand{\HCP}{\mathbf{H^c_P}} \newcommand{\GP}{\mathbf{G_P}} \newcommand{\GQ}{\mathbf{G_Q}} \newcommand{\AG}{\mathbf{A_G}} \newcommand{\GCP}{\mathbf{G^c_P}} \newcommand{\PXP}{\mathbf{P}=(X,P)} \newcommand{\QYQ}{\mathbf{Q}=(Y,Q)} \newcommand{\GVE}{\mathbf{G}=(V,E)} \newcommand{\HWF}{\mathbf{H}=(W,F)} \newcommand{\bfC}{\mathbf{C}} \newcommand{\bfG}{\mathbf{G}} \newcommand{\bfH}{\mathbf{H}} \newcommand{\bfF}{\mathbf{F}} \newcommand{\bfI}{\mathbf{I}} \newcommand{\bfK}{\mathbf{K}} \newcommand{\bfP}{\mathbf{P}} \newcommand{\bfQ}{\mathbf{Q}} \newcommand{\bfR}{\mathbf{R}} \newcommand{\bfS}{\mathbf{S}} \newcommand{\bfT}{\mathbf{T}} \newcommand{\bfNP}{\mathbf{NP}} \newcommand{\bftwo}{\mathbf{2}} \newcommand{\cgA}{\mathcal{A}} \newcommand{\cgB}{\mathcal{B}} \newcommand{\cgC}{\mathcal{C}} \newcommand{\cgD}{\mathcal{D}} \newcommand{\cgE}{\mathcal{E}} \newcommand{\cgF}{\mathcal{F}} \newcommand{\cgG}{\mathcal{G}} \newcommand{\cgM}{\mathcal{M}} \newcommand{\cgN}{\mathcal{N}} \newcommand{\cgP}{\mathcal{P}} \newcommand{\cgR}{\mathcal{R}} \newcommand{\cgS}{\mathcal{S}} \newcommand{\bfn}{\mathbf{n}} \newcommand{\bfm}{\mathbf{m}} \newcommand{\bfk}{\mathbf{k}} \newcommand{\bfs}{\mathbf{s}} \newcommand{\bijection}{\xrightarrow[\text{onto}]{\text{$1$--$1$}}} \newcommand{\injection}{\xrightarrow[]{\text{$1$--$1$}}} \newcommand{\surjection}{\xrightarrow[\text{onto}]{}} \newcommand{\nin}{\not\in} \newcommand{\prufer}{\mbox{prüfer}} \DeclareMathOperator{\fix}{fix} \DeclareMathOperator{\stab}{stab} \DeclareMathOperator{\var}{var} \newcommand{\inv}{^{-1}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section15.3Burnside's Lemma

Burnside's lemma 1  relates the number of equivalence classes of the action of a group on a finite set to the number of elements of the set fixed by the elements of the group. Before stating and proving it, we need some notation and a proposition. If a group \(G\) acts on a finite set \(\cgC\text{,}\) let \(\sim\) be the equivalence relation induced by this action. (As before, the action of \(\pi\in G\) on \(\cgC\) will be denoted \(\pi^*\text{.}\)) Denote the equivalence class containing \(C\in \cgC\) by \(\langle C\rangle\). For \(\pi\in G\text{,}\) let \(\fix_\cgC(\pi)=\{C\in \cgC\colon \pi^*(C) = C\}\text{,}\) the set of colorings fixed by \(\pi\text{.}\) For \(C\in\cgC\text{,}\) let \(\stab_G(C)=\{\pi\in G\colon \pi(C) = C\}\) be the stabilizer of \(C\) in \(G\text{,}\) the permutations in \(G\) that fix \(C\text{.}\)

To illustrate these concepts before applying them, refer back to Table 15.2. Using that information, we can determine that \(\fix_\cgC(r_2) = \{C_1,C_{10},C_{11},C_{16}\}\text{.}\) Determining the stabilizer of a coloring requires finding the rows of the table in which it appears. Thus, \(\stab_{D_8}(C_7) = \{\iota,h\}\) and \(\stab_{D_8}(C_{11}) = \{\iota,r_2,p,n\}\text{.}\)

With Proposition 15.8 established, we are now prepared for Burnside's lemma.

Before we proceed to the proof, note that the calculation in Burnside's lemma for the example of \(2\)-coloring the vertices of a square is exactly the calculation we performed at the end of Section 15.1.

Burnside's lemma helpfully validates the computations we did in the previous section. However, what if instead of a square we were working with a hexagon and instead of two colors we allowed four? Then there would be \(4^6=4096\) different colorings and the dihedral group of the hexagon has \(12\) elements. Assembling the analogue of Table 15.2 in this situation would be a nightmare! This is where the genius of Pólya's approach comes into play, as we see in the next section.